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Abstract
Background Gastric cancer (GC) is one of the most prevalent malignant tumors worldwide and is associated with 
high morbidity and mortality rates. However, the specific biomarkers used to predict the postoperative prognosis of 
patients with gastric cancer remain unknown. Recent research has shown that the tumor microenvironment (TME) 
has an increasingly positive effect on anti-tumor activity. This study aims to build signatures to study the effect of 
certain genes on gastric cancer.

Methods Expression profiles of 37 T cell-related genes and their TME characteristics were comprehensively analyzed. 
A risk signature was constructed and validated based on the screened T cell-related genes, and the roles of hub genes 
in GC were experimentally validated.

Results A novel T cell-related gene signature was constructed based on CD5, ABCA8, SERPINE2, ESM1, SERPINA5, and 
NMU. The high-risk group indicated lower overall survival (OS), poorer immune efficacy, and higher drug resistance, 
with SERPINE2 promoting GC cell proliferation, according to experiments. SERPINE2 and CXCL12 were significantly 
correlated, indicating poor OS via the Youjiang cohort.

Conclusions This study identified T cell-related genes in patients with stomach adenocarcinoma (STAD) for prognosis 
estimation and proposed potential immunotherapeutic targets for STAD.
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Background
As one of the most prevalent malignant tumors world-
wide, gastric cancer (GC) has high morbidity and mortal-
ity rates, with stomach adenocarcinoma (STAD) as one of 
the major pathological subtypes [1]. STAD accounts for 
80–90% of all gastric cases [2]. The 5-year survival rate of 
patients with STAD with advanced or metastatic disease 
is less than 30% [3, 4]. Most patients worldwide are not 
diagnosed until the advanced stage owing to the absence 
of significant early symptoms and limitations in medi-
cal screening [5, 6]. Therefore, the accurate prediction 
of biomarkers is crucial for clinical prognostication and 
treatment. Currently, surgical resection is the primary 
treatment for STAD [7]. However, because of the recur-
rence and metastasis of STAD after surgery, its prognosis 
is poor [8]. Immunoassay inhibitors of PD-L1 have posi-
tive effects on immunotherapy and targeted therapy, and 
they can significantly improve the prognosis of patients 
with stable microsatellite carcinomas [9].

Increasing evidence suggests that the tumor micro-
environment (TME) plays a role in anti-tumor activity 
and contributes to the prediction of immune checkpoint 
blockade (ICB) responses [10–13]. However, gaining 
advantages from STAD is not common [14]. The TME 
comprises tumor cells, fibroblasts, extracellular matrix 
elements, and diffusing cytokines [15, 16]. Growing 
tumor cells can be recognized and destroyed by tumor-
infiltrating immune cells. This defensive behavior may 
involve inflammation as tumor cells evade immune 
defense mechanisms by selecting more aggressive tumor 
clones [17]. High levels of regulatory T cells are com-
monly found in patients with cancer and are associated 
with the prognosis of different types of STAD [18].

Furthermore, treatment is influenced by T-cell ther-
apy [19]. However, these cellular treatments need to 
be improved further to improve the cure rate. To date, 
studies on T-cell function have mainly focused on the 
negative regulatory factors contributing to functional 
deficiency [20]. The US Food and Drug Administra-
tion (FDA) approved the first chimeric antigen receptor 
T-cell (CAR-T) therapy [21]. Nevertheless, the therapeu-
tic effect of the chimeric antigen receptor on STAD did 
not meet expectations because of the failure of T cells 
to perform their effector function within the TME fully. 
Positive regulators reportedly have a positive effect on 
T-cell proliferation, activation, and secretion of key cyto-
kines, thereby optimizing and improving T-cell function 
in STAD [22], that may further improve the treatment of 
STAD.

In this work, we aim to build signatures to study the 
effect of certain genes on gastric cancer using LASSO 
and multivariate Cox regression analyses. Our find-
ings underscore the significance of considering tumor-
infiltrating immune cells and their interactions with the 

TME in prognostic assessment and treatment planning. 
Also, the identification of potential therapeutic targets 
such as CXCL12 and SERPINE2 presents opportunities 
for developing targeted interventions aimed at mitigating 
immune exhaustion and enhancing treatment efficacy.

Materials and methods
STAD data source and preprocessing
Data on STAD-related gene expression, prognosis, and 
clinicopathological characteristics were collected from 
comprehensive GEO (GSE38749, GSE84437, GSE34942, 
and GSE15459; https://www.ncbi.nlm.nih.gov/geo/) and 
TCGA (https://portal.gdc.cancer.gov/) datasets. Follow-
ing this, the FPKM values were converted to TPM values 
within the composite matrix. The 37 T cell-related genes 
were derived from the latest research [22]. Ten tumors 
and ten normal single-cell ribonucleic acid (scRNA) sam-
ples were obtained from GSE18394.

WGCNA co-expression network construction
The co-representation network of differentially expressed 
genes (DEG) is built by the “WGCNA”package in the 
R package (version xx; The R Foundation for Statisti-
cal Computing, Vienna, Austria). Subsequently, pairs 
of genes were subjected to Pearson’s correlation matrix 
analysis.

To further analyze sample clustering for outliers detec-
tion, we calculated the similarity of the characteristic 
genes within each module, selected the standard tangent 
value from the module tree, and merged specific mod-
ules. The module-feature relationship between modular 
feature genes and T cells was described within the char-
acteristic gene network, and two modules related to spe-
cific traits were found.

DEGs identification and enrichment analyses
The parameter of “limma”in the R package (The R Foun-
dation for Statistical Computing, Vienna, Austria) was set 
to 1.5, and the P-value was adjusted to be less than 0.05 
to screen DEGs across different T-cell clusters. A total 
of 178 genes were identified as DEGs. Moreover, disease 
ontology (DO), gene ontology (GO), and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) enrichment analy-
ses were used to explore the characteristics of the DEGs 
[23–25].

Construction of prognostic T cell-related signature
The signature score was calculated to express the prop-
erties of each cell type, and DEGs were identified from 
T-cell clusters using LASSO and multivariate Cox regres-
sion analyses. Univariate Cox regression, overall sur-
vival (OS) (p < 0.05), and heatmap analysis were used to 
verify the signature validity. The GSE38749, GSE84437, 
GSE34942, GSE15459, and TCGA-STAD cohorts were 
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segmented into training (n = 522) and test (n = 521) data-
sets at a ratio of 1:1, and the former was used to establish 
risk characteristics. We analyzed the various trajectories 
of each variable and identified candidate genes using 
multivariate Cox analysis. The risk score was calculated 
using the following formula:

Risk score = Σ(Expi × Coefi).

Analysis of TME, immunological checkpoint, mutation, and 
drug susceptibility
Based on the data from TCIA and TIDE (http://tide.dfci.
harvard.edu/), a boxplot was used to visualize the differ-
ences between the two groups in the expression levels 
and treatment diversity of the PD-1 and CTLA-4 immu-
nological checkpoints. Additionally, we examined drug 
susceptibility and mutation status in the high- and low-
risk groups using the prophetic and maftools packages, 
respectively.

Validation of external cohort
Survival analysis was conducted on the external IMV210 
cohort and GSE62254 for validation. This involved ana-
lyzing the binary response in risk scores among CR/PR 
and SD/PD, as well as Kaplan–Meier survival analysis 
between high-risk and low-risk score groups. For the 
scRNA data, we created a project using the Seurat pack-
age and set the following screening criteria: (1) Each gene 
was expressed in at least three cells; (2) The total num-
ber of molecules detected in each cell was > 1000; (3) 
The number of genes detected in each cell was > 200 and 
< 10,000; (4) The proportion of mitochondrial and ribo-
somal genes was < 20%. The first 2000 highly variable 
genes were selected for scale analysis, and PCA dimen-
sionality reduction analysis was performed. Twenty PC 
were selected for unsupervised clustering and labeled 
according to the marker genes of different cell types. Four 
methods, Ucell, singscore, ssgsea, and addmoduleScore, 
were used to score the TME of both normal and tumor 
tissues. The scores obtained from the UCell, irGSEA, 
and GSVA packages were utilized to explore the differen-
tial expression of SEPRINE2 in T cells from normal and 
tumor groups.

Youjiang cohort and Immunohistochemical
OS with high and low SEPRINE2 expression in GC was 
verified using the Youjiang cohort, and immunohisto-
chemistry was conducted to test the content of high or 
low-expression SEPRINE2 samples in formalin/PFA-
fixed paraffin-embedded sections (n = 93). Human GC 
tissues were stained for SERPINE2/PN-1 using ab154591 
at a dilution of 1/500.

Cell culture and transfection
Human GC cell lines AGS and BGC-823 were pur-
chased from the Shanghai Institutes of Biological Sci-
ences (Shanghai, China). AGS and BGC-823 cells were 
cultured in RPMI 1640 medium (Gibco, USA) supple-
mented with 1% penicillin-streptomycin (Gibco, USA) 
and 10% fetal bovine serum (Gibco, USA). BGC-823 cells 
were maintained in Dulbecco’s modified DMEM medium 
(Gibco, USA) supplemented with 1% penicillin-strepto-
mycin (Gibco, USA) and 10% fetal bovine serum (Gibco, 
USA). All the cells were cultured at 37  °C and 5% CO2. 
Cell transfections were performed using Lipofectamine 
3000 (Invitrogen, USA), with oligonucleotides as a con-
trol. After 48 h of transfection, cellular RNA and proteins 
were extracted.

Cell migration assays and proliferation
Stably transfected AGS and BGC-823 cells were seeded 
in 96-well plates at a density of 5 × 104 cells/mL. A Cell 
Counting Kit-8 (Dojindo, Japan) was used to test cellu-
lar proliferative capacity. On each of the subsequent 6 
days, the optical density was evaluated at 450 nm using 
a microplate reader (TEAN, Switzerland). Additionally, 
a transwell migratory assay was conducted to study the 
migratory response of AGS and BGC-823. The cell den-
sity was standardized to 2 × 105 cells/mL, and a volume 
of 100 µL cell suspension was added to the upper cham-
ber. Medium containing 20% fetal bovine serum was 
added to the lower chamber. After 24 h, AGS and BGC-
823 cells within the lower chamber were washed in 4% 
polyoxymethylene for 15 min, followed by staining with 
0.1% crystal violet and subsequent rinsing with deionized 
water for 30 min. Finally, the cells were counted under a 
microscope.

Statistical analyses
R (version 4.1.2, R Foundation for Statistical Comput-
ing, Vienna, Austria) (https://www.r-project.org/) was 
applied for all analyses, and statistical significance was set 
at p < 0.05.

Results
Landscape of T cell-related gene modification in STAD
Among the included 37 T cell-related genes, the copy 
number variations (CNV) were investigated (Fig.  1a). 
Notably, significant increases in CNV were observed 
in genes such as LIG3, ZNF830, ATF6B, CLIC1, and 
DUPD1, while decreases were most obvious in HOMER1, 
DCLRE1B, B2M, MRPL51, and LTBR. The distribution 
profile of CNV modification in the 37 T cell-related genes 
is illustrated in Fig.  1b. To investigate the association 
between genes and their interactions in STAD studies, 
we generated a T cell-related co-expression visualization 
protein-protein interaction (PPI) network (Fig. 1c).

http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
https://www.r-project.org/
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Distribution of immune infiltration in STAD
The proportions of each T-cell subset were not sig-
nificantly correlated, as shown in Fig.  1d. The popula-
tion quantities with remarkably positive relevance were 
CD8 + T cells and CD4 + memory-activated T cells (0.5), 
activated neutrophils and mast cells (0.45), and rest-
ing mast cells and activated natural killer cells (0.36). As 
shown in Fig. 1e, the levels of macrophage M1, T-cell fol-
licular helper, macrophage M0, and T-cell CD4 memory 
activation were comparatively high in the tumor samples 
contained in the heatmap. In the PPI network, key gene 
pathways such as B2M and HLA have multiple func-
tions and play a central role in co-expression and physical 
interactions.

WGCNA co-expression analysis of STAD samples
The intercept value was set to 76 to detect outliers, the 
outlier samples were removed, and the remaining sam-
ples were included in the analysis (Additional figure S1a). 
As shown in Additional figure S1b, when power = 5, the 
scale independence was 0.9, and the mean connectiv-
ity was relatively high. Power = 5 was set to build the 
co-expression module and obtain the result of the pre-
liminary module division. Different modules were rep-
resented in different colors in line with the results of 
WGCNA (Additional figure S1c). To detect outliers, a 
tree was built using the eigenvalues of the module and 

very close distance module merging, with the inter-
cept value set to 0.5 (Additonal figure S1d). As shown in 
Additional figure S1e, a co-expression module was con-
structed, and the results were obtained after merging 
similar modules. According to the characteristic value of 
each sample in each module, correlation analysis was car-
ried out to find out two modules related to specific traits 
(infiltrated immune cells). Among the seven modules, 
the green module was highly correlated to T cells CD8 
(CD8 + T cells) (R2 = 0.3; p = 2e-08) and activated T cells 
CD4 memory (R2 = 0.24; p = 5e-06). Furthermore, the 
green-yellow module showed a higher correlation with 
activated T cells CD4 memory (R2 = 0.34; p = 8e-11) and 
T cells CD8 (CD8 + T cells) (R2 = 0.29; p = 6e-08; Fig. 1f ).

Screening genes and survival analysis
From the chart, we identified five genes (IFNL2, IL12B, 
B2M, HLA-A, and CD19) that were selected from the 
intersection of the T-cell regulatory factor and the 
WGCNA gene (Fig.  2a), with only four (IL12B, B2M, 
HLA-A, and CD19) expressed in selected samples. 
Among the T-cell regulatory factors, normal and tumor 
genes showed prominently distinct Inter-cell Interference 
Coordination (ICIC), with tumor gene expression higher 
than normal in RAN, CHK1, and CDK2 cells (Fig.  2b). 
Prognostic analysis indicated a significant survival advan-
tage for CD19 and IL12B (Fig.  2c, d). The distribution 

Fig. 1 Genetic alterations and tumor microenvironment (TME) of T-cell related genes in stomach adenocarcinoma (STAD). a Frequencies of copy number 
variations (CNV) gain, loss, and non-CNV among T-cell related genes. b. Locations of CNV alterations in T-cell related genes on 23 pairs of chromosomes. 
c. The interaction between 37 T-cell related genes in STAD. d. Correlation matrix for all 22 immune cell proportions. The darker the colour, the higher the 
correlation was. e. Heatmap of the 22 immune cell proportions. f. Module − trait relationships between module eigengenes and T-cells
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of genes encoding T-cell regulatory factors is shown in 
Fig. 2e. As shown in Fig. 2f, B2M and HLA − A exhibited 
a high correlation, as did IL12B and CD19.

NMF clustering based on related genes in STAD samples
In the union of the GSE38749, GSE84437, GSE34942, 
GSE15459, and TCGA-STAD cohorts, the STAD sam-
ples were grouped into diverse molecular subtypes using 

NMF analysis (Fig.  3a and b). We designated these two 
clusters as T cell-related genes: Clusters C1 and C2. Clus-
ter C1 displayed marked indigenous survival advantages 
(Fig. 3c). Furthermore, these two clusters also displayed 
notably diverse enrichment characteristics of the KEGG 
pathway in GSVA enrichment analysis. For instance, in 
KEGG intestinal immune network for IgA production, 
the KEGG T-cell receptor signaling pathway and KEGG 

Fig. 2 Screening genes and survival analysis. (a) VEEN diagram results. (b) Box plot demonstrating the immune cell-infiltrating characteristics of T-cell 
regulatory factor. (c) Survival analysis of genes. (d) The interaction between 4 genes in T-cell regulatory factor. (e) Correlation of genes
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B cell receptor signaling pathway had high-level gene 
expression in C1 and low-level gene expression in C2, 
while KEGG basal transcription factors had high expres-
sion levels in C2 and low expression levels in C1 (Fig. 3d). 
These two T-cell clusters also displayed marked distinc-
tions in ICIC (Fig. 3e). Activated CD8 T-cells, activated 
B cells, and macrophages were amplified in cluster C1, 

suggesting that they could promote inflammation, while 
activated CD4 T-cells, type 17 T-helper cells, and neu-
trophils were abundant in another cluster. The results 
indicated that the expression of major histocompatibil-
ity complex type 1 (MHC-1) in the C1 cluster was higher 
than that in the other clusters, which may be one of the 
reasons why the survival rate of CI was higher than that 

Fig. 3 Clinicopathological and biological characteristics of two distinct T-cell clusters of samples from the combination of GSE38749, GSE84437 and The 
Cancer Genome Atlas-analysis of stomach adenocarcinoma (TCGA-STAD) cohorts, divided by Non-negative Matrix Factorization (NMF) analysis. (a) NMF 
analysis heatmap defining two clusters (k = 2) and their correlation area. (b) NMF rank survey performed on the two T-cell clusters. (c) Survival analysis of 
the two distinct clusters. (d) Heatmap of gene set variation analysis(GSVA) enrichment analysis. (e) Box plot demonstrating the immune cell-infiltrating 
characteristics of the two clusters. (f) principal components analysis(PCA) of two clusters
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of the other clusters. As shown in Fig. 3f, the genes were 
divided into two clusters, C1 and C2, proving that the 
two groups clustered well.

GO, KEGG, and DO enrichment analyses of clusters
A total of 178 genes with an absolute value of LogFC 
greater than 1.5 and p < 0.05 were obtained by analyz-
ing the differences between the C1 and C2 groups. To 
investigate the association between T cell-related genes 

and other illnesses, DO analysis was carried out, and the 
results showed that all genes were strongly correlated 
with bacterial infectious diseases, leukocyte diseases, and 
systemic mastocytosis (Fig.  4a). For each T cell-related 
gene cluster, a deeper understanding of the character-
istics and GO functional enrichment analysis was per-
formed using the cluster package. These genes showed 
abnormal enrichment related to biological processes, 
molecular functions, and cellular components, which 

Fig. 4 Disease Ontology (DO), Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes(KEGG) enrichment analysis of T-cell related genes. 
(a) Bubble chart of DO enrichment analysis of 178 DEGs. (b) Enrichment circle graph of GO terms of 178 DEGs. c-d. Enrichment circle graph of KEGG 
biological process of 178 DEGs
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could also partially account for the high incidence and 
recurrence rates of malignant gastric cancer (Fig.  4b). 
Accumulation of the biological processes was studied 
by carrying out KEGG analysis, confirming T-cellular 
receptor signaling transduction pathway, Th1, Th2, and 
Th17 cell transdifferentiation (Fig. 4c, d), all of which are 
related to T-cells and the immune microenvironment.

Establishment of the risk signature
LASSO and multivariate Cox regression analyses were 
employed, and 13 genes were selected from 178 genes 
by LASSO to construct signatures; six core genes (CD5, 
ABCA8, SERPINE2, ESM1, SERPINA5, and NMU) 
were screened from the DEGs to build the risk signa-
ture (Fig.  5a, b). Patients with STAD (n = 1043) were 

Fig. 5 Selection of optimal prognostic signatures and constructure of risk signature in the training set. a-b. Least absolute shrinkage and selection 
operator(LASSO) regression analysis for prognostic genes. c. Differences in risk score among distinct gene clusters. d. Heat map regarding the correlation 
between the risk signature, molecular, genetic classification, prognosis and clinical features. e. Differences in the expression of Differential Expression 
(DEG) Analysis among the low-risk group and high-risk groups
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stochastically separated into a training group (n = 522) 
and a test group (n = 521) using the caret R package, in 
which the training group was employed to construct sig-
natures. After the multivariate Cox regression analysis, 
the process of constructing the risk score was calculated 
as follows:

Risk score = (-0.3081*expression of CD5) + 
(0.18156*expression of ABCA8) +.

(0.2309*SERPINE2) + (0.2112*expression of ESM1) + 
(0.0970*SERPINA5) + (0.1116*NMU).

The outcomes of the risk-scoring system applied to all 
patients showed significant diversity. Patients with STAD 
and risk scores below the average standard in the gene 
cluster were assigned to the low-risk group (n = 549), 
whereas those exceeding the average standard were 
assigned to the high-risk group (n = 494). Overall, the risk 
score of patients with STAD in the T cell C2 group was 
higher than that in the other groups (Fig. 5c).

A heatmap was created, highlighting that tumor, 
node, and metastasis staging was elevated in the high-
risk group (Fig. 5d). This conclusion also confirmed that 
C1 had a significantly better prognosis than C2. Gene 
expression in the two groups was visually analyzed to 
thoroughly investigate the association between the risk 
score and other parameters (Fig.  5e). When TCGA and 
GEO cohorts were merged, log2 was used for data with 
large values to eliminate batch effects (Additional figure 
S1f ). Survival analysis was carried out in the training 
and test groups and the initial merged cohort to guar-
antee that the outcome of the obtained risk signature’s 
predictive ability could be confirmed. Similar survival 
advantage results were observed across all analyzed 
groups (Fig. 6a-c). In the low-risk group, the expression 
of T cell-related genes was relatively high, whereas in 
the other groups, the expression was low. The distribu-
tion of risk scores demonstrated that a lower risk score 
was associated with a higher survival probability and that 
the survival rate decreased with an increase in the risk 
score. From the distribution risk score curve, affordable 
T cell-related genes such as CD5 were higher in the low-
risk group, whereas the inverse outcome was observed 
in the high-risk group. ABCA8, SERPINE2, ESM1, SER-
PINE2, and NMU expression levels were higher in the 
high-risk group, whereas an inverse outcome was noted 
in the low-risk group. The six core genes were distributed 
in the low- and high-risk groups within the training, test-
ing, and total samples using heat maps. The probability of 
survival decreased as the risk score increased (Fig. 6d-f ). 
To verify the veracity of the risk signature, we generated 
ROC curves (Fig. 6g-i). Univariate and multivariate Cox 
regression analyses of the combined cohort also veri-
fied that the risk characteristics could be independently 
applied as a prognostic signature for STAD (Fig.  6j, k). 
The 1-, 3-, and 5-year survival rates of patients could 

also be predicted using a contingency map containing 
risk scores and clinicopathological parameters (Fig.  6l). 
Based on the calibration chart, the previous line chart 
had characteristics similar to those of the calibration plot 
(Fig. 6m). We analyzed the predictive effects of univariate 
and multivariate Cox regression analyses on individual 
cohorts (GSE15459, GSE34942 + GSE38749, GSE84437, 
and TCGA) (Fig. 6n). A survival analysis was performed 
to test the predictive effect of the signature on individual 
cohorts. In all cohorts, survival decreased with increas-
ing risk scores (Fig. 6o).

Characteristics of TME and results of immunotherapy
The correlation between the clusters and risk was visual-
ized using a scatter diagram and heatmap (Fig. 7a). The 
results showed mast cells, monocytes, and type II inter-
feron responses were positively linked to the risk score. 
T-cell inhibition, activated CD8 + T cells, activated B 
cells, and other immune cells were significantly nega-
tively correlated. The matrix and estimate scores in the 
low-risk group were lower; however, there was no sig-
nificant difference between the two groups (Fig. 7b). The 
interstitial and estimate scores showed marked varia-
tion between the low- and high-risk subgroups (Fig. 7c). 
The survival ratio and degree of purity of tumor cells in 
the high-risk group were significantly higher than those 
in the low-risk group. In STAD, the comprehensive risk 
score and cancer stem cell (CSC) index values were used 
to comprehensively assess the link between risk mark-
ers and CSC (Fig. 7d). The study displayed that risk score 
was positively associated with the CSC index (R = 0.28; 
p < 2.2e-16), demonstrating that the higher the risk score, 
the more obvious the differentiation grade of the stem 
cells. Subsequent analysis to explore the immune infiltra-
tion condition of T cell-related core genes was performed 
by studying the distribution disparity of somatic cell 
mutations between the low- and high-risk score groups 
using the maftools package (Fig.  8a, b). We performed 
a survival analysis of TMB and risk scores in different 
groups to forecast the prognosis of patients with STAD, 
and the outcome illustrated that the low-risk score and 
high-TMB groups had the highest survival rates (Fig. 8c, 
d). We also assessed the degree of association between 
TMB and the risk score, as well as between T-cell clus-
ters and gene clusters (Fig. 8e). The results further dem-
onstrated that low-risk scores correlated with high TMB. 
In addition, the TMB of clusters C2 and B were higher 
than those of the other two clusters. The low-risk group, 
compared to the high-risk group with a higher mutation 
load, was more extensive, which was consistent with the 
above findings and confirmed by subsequent TMB quan-
titative analysis (Fig.  8f ). We also analyzed microsatel-
lite instability (MSI) in the low- and high-risk subgroups 
to further assess the capacity of risk markers to predict 
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Fig. 6 Validation of the risk signature in training, testing sets and the two combined. a-c. Kaplan-Meier survival analysis between the high- and low-risk 
score groups in training, testing sets and the two combined. d-f. Scatter plots showing the survival status of stomach adenocarcinoma (STAD) patients 
with increasing risk scores. Ranked dot plots indicating the risk score distribution. Heat maps showing the distribution of the six candidate genes. g-i. 
receiver operating characteristic (ROC) curves predicting the sensitivity and specificity of 1-, 3- and 5-year survival according to the risk signature. j-k. 
Univariate COX regression analysis in the merged cohort and multivariate COX regression analysis in the merged cohort. l-m. Nomogram and Calibration 
curves for prediction of 1-, 3-, and 5-year survival rate of STAD patients in the two sets. n.Prediction effects of univariate and multivariate cox regression 
analyses on individual cohorts. o. Survival analysis in individual cohorts. The cohort order is as follows: GSE15459, GSE34942 + GSE38749, GSE84437, TCGA
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ICB responses in patients (Fig. 8g). The rate of MSI was 
higher in the low-risk group than in the high-risk group, 
suggesting that immunotherapy and clinical therapy were 
more effective in this subgroup. The association between 
the risk characteristics and MSI was further confirmed 
(Fig. 8h).

Immune escape and immunotherapy analysis
The high-risk group exhibited a high immune escape rate 
and poor immunotherapeutic efficacy (Fig. 9a). Through 
the analysis of immune cell differentiation, it can be seen 
that the immune expression of the PDCD1 and CD274 
high-risk group was low. Based on the data obtained, 
PD1 and PD-L1 were not very effective in the immune 
treatment (Fig. 9b). According to the characteristic value 
of the sample in each module and the characteristics of 

the sample, correlation analysis was performed to iden-
tify two modules related to specific traits: KEGG T-cell 
receptor signaling pathway and KEGG B-cell receptor 
signaling pathway were positively correlated in CD8 T 
cells (Fig.  9c). The treatment effect was observed using 
survival analysis in each group. The CR/PR group exhib-
ited the highest probability of survival (Fig. 9d). Estimate 
analysis revealed a significant gap between the matrix 
and estimate score between the low- and high-risk sub-
groups (Fig. 9e-h). The results indicated that the survival 
rate of tumor cells in the high-risk group was significantly 
higher than that in the low-risk group, accompanied by 
poorer immune efficacy. The half-maximal inhibitory 
concentrations (IC50) of paclitaxel, gemcitabine, 5-fluo-
rouracil, and doxorubicin were all higher in the high-risk 
groups, indicating potential drug resistance (Fig. 9i-l).

Fig. 7 Immune annotation and correlation between T-cell and
 anti-PD-1/L1, anti-CTLA-4 immunotherapy. (a) Relations between tumor purity, ESTIMATE score, immune score, stromal score, and different stomach 
adenocarcinoma (STAD) phenotypes. (b) Correlation between the abundance of immune cells and six candidate genes. (c) Violin plot illustrating the 
result of ESTIMATE analysis. d.Relationships between the risk signature and cancer stem cell (CSC) index
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Reference to an external cohort for validation
Survival analyses were performed on the external 
IMV210 and GSE62254 cohorts to confirm the predic-
tive power of this risk marker in validating the survival 
advantage of the low-risk group. Similar results were 
observed in all pooled analyses (Fig. 10a, b). The binary 
response system showed that the SD/PD risk scores were 
significantly higher than those of CR/PR (Fig. 10c).

Signature discrimination
We compared our T cell-related gene signature with 
other published signatures [7, 26–33], which yielded a 
C-index of 0.613, which was higher than other signatures 
published within the last 3 years (Fig. 10d). According to 

restricted mean survival, it also achieved a higher accu-
racy of survival estimation in the validation datasets (HR: 
2.361; p < 0.001; Fig. 10e). ROC curves and survival analy-
ses were generated for comparison (Additional figure S2).

Comprehensive analysis of scRNA
After quality control, 54,274 cells were labeled to show 
their distribution (Fig.  10f ). Enrichment analysis sug-
gested that the T-cell content in tumors was significantly 
higher compared to normal tissues (Fig.  10g). Fur-
thermore, the T-cell subpopulations were divided into 
gamma delta, CD4+, NK, and CD8 + T cells. SERPINE2 
was highly expressed in tumors, mainly in CD4 + T cells 
and NK cells (Fig. 10h, i). The signature score was higher 

Fig. 8 Exploration of the association between the tumor somatic
 mutation, Microsatellite Instability(MSI) and risk signature. a-b. The waterfall plots of tumor somatic mutation constructed by those with low- and high-
risk scores, respectively. c. Survival analysis on stomach adenocarcinoma (STAD) samples with high and low tumor mutational burden(TMB). d. Survival 
analysis on STAD samples with different TMB and risk score. e. Relationships between TMB and risk score based on T-cell clusters, respectively. f. Distribu-
tion of STAD samples with low- and high-risk score in TMB. g-h. Relationships between risk signature and MSI
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for CD4 + T cells and NK cells of tumors and lower for 
gamma delta T cells (Fig. 10j).

Immunohistochemistry and Youjiang cohort analysis
Based on immunohistochemistry, the Youjiang cohort 
was divided into Low SERPINE2 (n = 44) and High SER-
PINE2 (n = 49) groups, and samples with lower SER-
PINE2 expression exhibited better OS (HR = 3.197; 
p = 0.007; Fig. 11a-d). As shown in Fig. 11e, the SERPIN2 
and CXCL12 levels were significantly correlated.

Down-regulation of CXCL12 inhibited the proliferation and 
migration of AGS and BCG-823 cells
To investigate the effects of CXCL12 in vitro, we first val-
idated the downregulation of CXCL12 expression in AGS 
and BCG-823 cells (Fig.  11f ). According to the results 
of the CCK-8 assay, the knockdown of CXCL12 sig-
nificantly reduced the proliferative viability of AGS and 
BCG-823 cells compared to the control group (Fig. 11g). 
Furthermore, the transwell migration assay indicated that 
the knockdown of CXCL12 expression markedly sup-
pressed the metastatic ability of AGS and BCG-823 cells 
(Fig. 11h). Overall, the downregulation of CXCL12 signif-
icantly inhibited the proliferation and migration of AGS 
and BCG-823 cells.

Association between survival and GC subtypes defined by 
CXCL12 expression
To determine the effect of CXCL12 on patient sur-
vival, we analyzed the survival of patients with differ-
ent CXCL12 expression levels. Survival analysis showed 
that patients with higher CXCL12 expression had worse 
OS than those with lower CXCL12 expression (Fig. 11i). 
These data suggest that the analysis of CXCL12 expres-
sion yields different subtypes of GCs. Specifically, our 
results suggest that lower CXCL12 expression levels are 
associated with improved survival in patients with GC.

Discussion
The incidence of STAD is decreasing in most developed 
countries [34]; however, the number of deaths due to the 
disease is increasing [35]. Currently, treatment for gastric 
cancer is not satisfactory [36]. Moreover, more than half 
of the patients diagnosed with gastric cancer cannot be 
treated surgically at the time of diagnosis [37]. The lack 
of treatment for gastric cancer also leads to rapid dis-
ease progression and increased mortality. Previous stud-
ies have investigated the correlation between genes and 
carcinogenesis in various cancers, including GC [38, 39]. 
Multiple types of genomic damage, including the activa-
tion of oncogenes and inactivation of tumor suppressor 
genes, are factors that cause gastric cancer [40]. Its anti-
tumor effects are characterized by the highly coordinated 

Fig. 9 Immunotherapy and Drug sensitivity analysis. (a) Box plot suggesting the difference of response towards immunotherapy between high- and 
low-risk score group. (b) Differences in the expression of T-cells among the low-risk group and high-risk groups. (c) gene set variation analysis(GSVA) 
analysis of 6 core genes of the signature. (d) survival after immunotherapy. e-h. The efficacy of immunotherapy for high- or low- risk groups. i-l. Drug 
sensitivity of Paclitaxel, Gemcitabine, 5-Fluorouracil and Doxorubicin
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actions of many genes. Owing to the inadequacy of cur-
rent medical technology, only one or two genotypes have 
been evaluated [41].

The present study aimed to build signatures to study 
the effect of certain genes on gastric cancer using LASSO 
and multivariate Cox regression analyses. In this study, 
LASSO and multivariate Cox regression analyses were 
applied to build signatures to study the effect of certain 
genes on gastric cancer. Six core genes (CD5, ABCA8, 
SERPINE2, ESM1, SERPINA5, and NMU) were selected 
from the DEGs to establish risk marker signatures. The 
results showed that The risk score of T cell Cluster C2 
was significantly higher than that of T cell Cluster C1, 
and the prognosis of C2 was significantly better than 
that of CI. We also performed validation using an exter-
nal cohort, which further confirmed that our pheno-
typic classification of T cell-associated gene mutations 
was meaningful. In addition, we preliminarily found that 
the signature genes were closely correlated with STAD, 

which provides valuable clues for further research on 
immunotherapy targets for STAD.

Initially, we selected four genes (IL12B, B2M, HLA-A, 
and CD19) for further study, among which CD19 and 
IL12B showed a significant survival advantage in the pre-
dictive analysis. Autologous CD19-targeted CAR T-cells 
could significantly help treat blood cancer [42]. Epide-
miological studies have shown that IL-12B is associated 
with an increased incidence of cervical cancer [43]. The 
TME cannot be ignored during tumor development [44] 
as it contains many different cell types, such as endo-
thelial and fibroblast [45]. Tumor-infiltrating immune 
cells can directly or indirectly participate in immune 
responses, thereby affecting the prognosis of patients 
with tumors [46]. For example, dendritic cells can cap-
ture antigens emitted by tumors, while Effector T cells 
(CD8+) and TAMs can lyse and phagocytose tumor cells.

Additionally, helper T cells (CD4+) limit the immune 
response [47]. Inhibition of these cytokines can 
strengthen the anti-tumor effect of tumor-infiltrating 

Fig. 10 Cohorts of IMV210 and GSE62254 and external signatures for the validation of TRG-signature, and further scRNA analysis based on GSE18394. 
a, b. Kaplan-Meier survival analysis between the high- and low- risk score groups. In GSE62254 and IMV210,respectively. c. Binary response in risk score 
among CR/PR and SD/PD. d. C-index of different signatures. e. Restricted Mean Survival (RMS) Curves for different Signature Values. f. The distribution of 
different cells in gastric cancer and adjacent areas. g. The total gene enrichment score in T cell. h. Expression of SEPRINE2 gene in T cells. i. Ratio map of T 
cell subsets. j. Gene enrichment score in subset
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lymphocytes and further improve their clinical therapeu-
tic effect [48, 49]. A recent study also confirmed that T 
helper cells are effective prognostic immune cells, which 
is correlated with further studies on gastric cancer [50]. 
Based on immunological and drug sensitivity analyses, 
we found that the high-risk group had a higher prob-
ability of immune escape and was generally resistant to 
first-line chemotherapy, indicating insensitivity to these 
treatment methods.

The scRNA results suggested that, compared to nor-
mal tissue, T-cell infiltration in GC was more abundant, 
mainly composed of differentiated CD4 + T cells and NK 
cells, while gamma delta T cells with higher differentia-
tion potential were fewer, indicating T-cell exhaustion in 
the tumors. SERPINE2, which had the highest score in 
the signature, was highly expressed in T cells from GC. 
We found a significant positive correlation between 
SERPINE2 and the T cell-related factor CXCL12 in our 
dataset. Previous studies indicated that CXCL12 inter-
acts with T cells to reduce OS in patients with GC [51], 
while SERPINE2 promotes cell proliferation [52]. Corre-
spondingly, we tested the effects of CXCL12 downregu-
lation on cell proliferation and migration and found that 
CXCL12 significantly reduces promotional and migration 
potential in GC cell lines. Survival analyses performed 
for patients with different CXCL12 expression levels 

confirmed that patients with high CXCL12 expression 
levels had poor survival probability. However, our study 
not only confirmed the effects of CXCL12 on tumor cell 
promotion and metathesis, but also showed the poten-
tial value of CXCL12 in tumor treatment. Therefore, we 
preliminarily speculated that SERPINE2 affects CXCL12 
through a potential pathway, thereby promoting T-cell 
exhaustion.

Numerous methods were employed to assist our signa-
ture in this study; however, there were still some short-
comings. Environmental, racial, economic, predictive, 
and follow-up factors influence OS [22]; this is a limita-
tion of our study, and in a follow-up study, we will control 
for the variables for a further in-depth study.

Conclusions
This work may contribute to the understanding of tumor 
immunity and provide new ideas for the personalized 
treatment of STAD.
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Fig. 11 Clinical cohort and experimental exploration of SERPINE2 and CXCL12 in GC. a Youjiang cohort of overall survival. b-d. Low, medium and high 
expression in immunohistochemistry of samples from Youjiang cohort. e. Relationship between SERPIN2 and CXCL12. f. Down-regulated of CXCL12 in 
AGS and BGC-823 cells. g. CCK-8 assay, down-regulated level of CXCL12 expression significantly reduce the proliferative ability of GC cells. h. Transwell 
cell migration assay analyse the down-regulation level of CXCL12 expression of GC cell. i. Survival analyses conducted on patients with different CXCL12 
expression level. *P < 0.05, **P < 0.01, ***P < 0.001
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